

A guide to using

PIC-Logicator Version 2
software and connecting
to a PIC microcontroller

 © Copyright Economatics (Education) Ltd. 1999-2004. PICAXE technology and portions of this document are © Copyright

Revolution Education Ltd. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form by any means, without prior permission of the copyright holder. Copyright is waived in the following

circumstances: small number of copies may be made for use only in the purchaser’s school. These copies may not be sold
or made available outside the purchaser’s school.

L300-01

 2

Contents

Getting Started ..3
RM CC3 Installation ..3
Website...3
Support ...3

Software

Overview ...5
Index of PIC-Logicator commands...6
How to build, edit and test run a PIC-Logicator flowsheet...7
Select PIC Type ..7
Memory Use ...8
Commands ...9
How to test run a flowsheet..11
Displaying and using BASIC ..12
Outputs ..14
Inputs...20
Digital Inputs...21
Analogue Inputs..26
Using Infrared control ..28
Procedures ..29
Variables..35
Counting ..35
Timing ..38

Connecting to PIC Microcontrollers

PIC Microcontrollers...42
Definitions ...45
PIC Microcontroller Pin-out diagrams ..46
Basic Connections..48
PICAXE Serial Download Circuit..50
Connecting Output Devices...51
Connecting Input Devices ...58

 3

Getting Started
Install the PIC-Logicator software onto the hard drive of your computer using your normal method of
installing software. See Section One for information on how to use the software and Section Two for
information on connection to the PIC microcontroller chip.

Version 2 of the PIC-Logicator software is built on the Microsoft.NET framework and as such will
require this to be installed prior to running the software. The .NET framework is included on the PIC-
Logicator CD and will normally install automatically. Please note that PIC-Logicator version 2 is not
compatible with Windows 95.

RM CC3 Installation
On the CD you will find a folder called ‘RM CC3 Package’ and within this, a zip file and instructions.

Because PIC-Logicator requires the .NET framework, it is necessary to allocate both the PIC-Logicator
package and the .NET framework package to every workstation.

Website
The Economatics website provides the latest PIC-Logicator news and information. It includes:
FAQs, projects and programming ideas, PCB designs to download, and an interactive demo of
PIC-Logicator software.

www.economatics.co.uk/education

Support
The PIC-Logicator user group on the Economatics Education website contains most of the information
that you will need in order to solve any technical issues. Once registered, you can post and contribute
information to the group to help you and other users of the products gain help.

The PIC-Logicator help files contain frequently asked questions and solutions to common problems.
The help can be found by pressing F1 in the PIC-Logicator software or from the Help>Contents menu.

 4

Section One:

PIC-Logicator
Software
Version 2

 5

Overview

PIC-Logicator provides a graphical environment
for designing, testing, editing and downloading
control sequences for PIC microcontrollers.

The range of PIC-Logicator commands allows
you to control output devices, such as motors
and lamps, that are connected to the PIC
microcontroller. You can switch devices on or
off in sequences using: timing, counting,
repetition, and decisions based on signals from
digital and analogue sensors that are
connected to the PIC microcontroller.

This section of the book explains how the
software is used, giving examples of the various
commands and techniques in the context of
possible school projects. It is organised under
the following headings:

1.How to build, edit and test run a PIC-
Logicator flowsheet

2. Outputs
This section shows:

how to switch output devices and motors
connected to outputs of a PIC microcontroller,
using Outputs, Motor, SOUND and OUT
commands; how timing can be built into a
control system using Wait or Sleep commands;
how the SerOut command can be used to
output serial information from the PIC
microcontroller.

3. Inputs
This section shows:

how to check the state of digital sensors
connected to a PIC microcontroller using the
Decision command;
how to use the Interrupt command for instant
response to digital sensors;
how to use the Compare command to make
use of readings from analogue sensors
connected to a PIC microcontroller, in a control
system.

4. Procedures

This section shows the important technique of
building a control system as a number of linked
sub systems.

5. Variables
This section shows:

how to create counting systems using Inc and
Dec commands; how timing can be built into a
control system; how Expression, IN and RND
commands are used to give a value to a
variable; how READ and WRITE commands are
used to store and access values of variables
using the PIC microcontroller’s EEPROM
memory.

Quick Start

If you are unfamiliar with the Logicator
approach to building control systems, it is a
good idea to begin by familiarising yourself with
the most commonly used commands which are:
Outputs, Wait, Motor and Decision (see the
Index of Commands page 6). Build and test run
the Examples, using section 1 (“How to build,
edit and test run a PIC-Logicator flowsheet”) as
reference to help you.

 6

Index of PIC-Logicator commands

Outputs ..14

Outputs command ...14
Wait command ...14
Out Command...15
Sound Command..15
Motor command...15
Sleep command ...16
SerOut Command...16
Servo Command...17
PulseOut Command...18
PlayTune command ...18
Play User Tune Command...19

Inputs...20
Digital Inputs...21

Decision command ..21
Interrupt (PICAXE only)...24
SerIn Command..24
PulseIn Command..25
Count Command ..25

Analogue Inputs..26
Calibrating sensors ..26
Compare command ...26

Using Infrared control ..28
InfraIn ..28
InfraOut..28

Procedures ..29

How to build a procedure ..29
How to use a procedure ..29
Designing systems with procedures..32

Variables..35

Counting ..35

The Inc command...35

Timing ..38

Setting the value of a variable..38
READ and WRITE ..40

Command List

PIC-Logicator commands are accessed from the Command List on the right hand side of the screen.
Scroll the list to see the full range of commands. You can use the Setup Command List menu to
customise the list (right click on the list), by changing the number of commands included, and the
sequence in which they appear.

 7

How to build, edit and test run a PIC-Logicator flowsheet

fig. 1.1 The PIC-Logicator screen.

In PIC-Logicator, you create your control system
in the form of a flowchart by dragging
commands from the Command List and placing
them in cells on the flowsheet working area
(See fig. 1.1).

You can then use the commands’ Cell Details
boxes to fill in their details as required, and

complete the flowsheet by drawing routes to
connect the cells.

When the flowsheet runs, the flow of control
follows the route you have drawn, carrying out
the command in each cell as it passes through
it.

Select PIC Type
Before you begin to build a flowsheet, you should decide which PIC microcontroller chip you intend to
use in your project. Select the chip from the PIC> Select PIC Type menu.

Command
List

Route

Cell

Flowsheet
working area

Command
details box

Available inputs &
outputs are shown
in blue

PIC Type

Set the COM port
that your chip project
or programmer is
attached to

 8

For 8 pin PICAXE devices, you must also
configure the input/output options using the
up/down selection box. Because 8 pin chips
actually only have 5 pins that are available to
use as inputs or outputs, these can be
configured as such to suit your project. Pin 4
and Pin 7 are fixed as Input 3 and Output 0
respectively, but all other combinations are
available. Note that on the PICAXE08, the only

analogue input is on Input 1, so if you wish to
use analogue inputs with your PICAXE08 you
must setup Input 1 to an input.

When you select a chip, the software
automatically configures itself to display only
the input, output and motor options available
with that chip.

Memory Use

The amount of memory available in the PIC chip
you have chosen for your project is an
important consideration when designing a
flowsheet.

Most commands use similar amounts of
memory, but this does vary. PIC-Logicator
provides two helpful tools to help you
understand how much memory your flowsheet
has used.

While you are designing a flowsheet, clicking
PIC>Update Memory Use (ALT-F3) will re-
calculate an estimate of the percentage
memory used by your flowsheet. This is
displayed as a bar graph in the lower right
corner of the PIC-Logicator window.

The bar fills with colour from left to right, for
example:

 Less that 5% memory use.

 Approximately 40% memory use

 Memory Full.

When using PICAXE type chips, the actual
memory used after download is available, and
is show on the status bar, below the flowsheet
area in PIC-Logicator. Note that you must
download your flowsheet into a PICAXE to get
this information displayed.

 9

Commands

NOTE: This chapter deals only with drawing the
flowsheet. Details of how to use the various
PIC-Logicator commands are given elsewhere
in Section One. See the Index of commands on
page 6.

Creating a command cell

Drag the required command from the
Commands List and place it on an unoccupied
cell. Most commands have their own Cell
Details dialog box which allows you to enter the
command details. Double click on the
command to open its Cell Details dialog box,
and set the details of the command as
required. When you have set the necessary
details, click OK to close the dialog box.

START and STOP commands

These two commands do not have Cell Details
dialog boxes. Simply place them on the
flowsheet working area. A START command
marks the point where the flowsheet starts
running. When the PIC microcontroller is reset
or powered up, the flowsheet starts at the
START command. Every flowsheet must have a
START command. A flowsheet will stop running
whenever a STOP command is reached.

You can only use one Start and one Stop
command in any flowsheet.

Labelling a command

It can be useful to give a command a label
which identifies what it is used for, e.g.
“switches on lamp”. When you open a Cell
Details box, the text in the yellow “label” box
will be highlighted, so just type your label and
click OK. his text does not affect the operation
of a command; it is only a label.

Comment

Comment commands allow you to add short
explanatory notes to a flowsheet. Although you
can type up to 34 characters into the text box
in the Cell Details box, the number of
characters actually appearing in a Comment
cell on the flowsheet will depend on factors

such as the Zoom setting and screen setting.
The default screen setting shows up to 16
characters in a Comment cell. Comments have
no effect on the operation of a flowsheet.

Fig 1.2 Explanatory information can be added to the
flowsheet by using command labels and Comment

commands.

Selecting a block of commands
Click on the top left corner of the block of cells.
Hold down the Control Key (CTRL) and click on
the lower right corner of the range of cells.

Fig 1.3. A block of commands in the selection frame.

Selected commands are coloured light blue. To
deselect commands, click on another part of
the flowsheet.

Deleting a command

Click on the command to select it. Selected
commands are coloured light blue. Press the
Delete key to delete the selected command. To
delete a block of commands, select the block
and press the Delete key.

 10

Moving commands

To move a single command or a block of
commands, select the area and drag it to its
new position.

Cutting, Copying and Pasting

Use the Cut, Copy and Paste options from the
Edit menu to cut or copy selected commands or
blocks of commands and paste them either
into another part of the same flowsheet or into
a different flowsheet. Alternatively, you can
copy commands or blocks of commands within
a flowsheet by first selecting them and then
holding down the Ctrl key as you drag them to
their new position. Remember that copied
commands will retain their existing cell details.

Flowsheet working area

Cells are arranged in rows and columns. Each
flowsheet has 22 columns and 25 rows. The
default screen shows just 12 columns and 12
rows. Use the View>Zoom menu if you want to
change the number of cells visible on the
screen.

Map

The Map option allows you to view the whole of
the flowsheet at once. The red square marks
the area currently displayed on the screen.

Fig 1.4. Routes can be drawn through cells or between
rails.

Routes
Routes can be drawn through the middle of a
cell, or in either one of the two rails between
cells, as shown in fig 1.4.
Routes must be drawn in the direction that you
want flow to take when the flowsheet runs.

Drawing Lines

Click on the Line Drawing icon on the toolbar.

The mouse cursor changes to a pen icon.
Click with the right mouse button where

the line should start. Right click at the end
point of the line.

Lines can only be drawn vertically or
horizontally. Always draw the line in the
direction of the flow, as indicated by the
arrows.

By holding down the Control key, the arrow keys
can also be used to draw lines.

Deleting routes

Click at the beginning of the route to be
deleted, and press the Delete key. When you
draw a new route from a command, the existing
route from the command will automatically be
deleted. To delete a route without deleting the
command in which it starts: first click on the
command to select it. Then hold down the Ctrl
key as you press the Delete key.

 11

How to test run a flowsheet
Before you download a flowsheet to a PIC
microcontroller, it is useful to be able to check
that it works as you intend it to. PIC-Logicator
has a number of features that allow you to test
run the flowsheet in the software.

1. The Digital Panel
As a flowsheet runs, the Digital Panel shows
the changing state of outputs, motors and
inputs as they would be if the flowsheet had
been downloaded to a PIC microcontroller. To
display the Digital Panel, select the
View>Digital Panel menu. Alternatively, click
the toolbar icon shown in fig 1.5.

Fig 1.5. Digital Panel and its toolbar icon

2. Simulating digital inputs
The function keys on the computer keyboard
are used to simulate inputs from digital sensors
while a flowsheet is running. Function keys F9
to F2 will simulate digital sensors connected to
inputs 0 to 7 on a PIC microcontroller. Key F9
simulates input 0; key F2 simulates input 7.
Pressing the function key is equivalent to the
sensor being “on” (1). When the key is not
pressed, it is equivalent to the sensor being
“off” (0).
Clicking on the corresponding input or output
on the digital panel will also have the same
effect.

3. Simulating analogue inputs
The Analogue Panel allows you to simulate the
changing reading from analogue sensors while
a flowsheet is running. Identify the sensor (A0
to A3) which you wish to simulate, and use the
slider in the panel to vary the simulated reading
from 0 to 255.

Fig 1.6. Analogue Panel and its toolbar icon

To display the Analogue Panel, select the
View>Analogue Panel menu. Alternatively, click
the toolbar icon shown in fig 1.6.

4. Run and Stop
To test run a flowsheet, either click the
System>Run menu or the green toolbar icon.
To stop a flowsheet running, click the
System>Stop menu or the red toolbar icon.

As the flowsheet runs, the flow of control is
highlighted so that you can follow it. If you want
to slow down the speed at which flow is
highlighted, select the Options>Run Speed...
menu, and use the dialog box to adjust the
speed.

5. Variables and EEPROM display
windows
If your flowsheet uses variables, it is useful to
display the Variables window when you test run
it. The changing values of any of the variables A
to H that are used in the flowsheet will be
displayed as the flowsheet runs.

Fig 1.7. The Variables window and the EEPROM window.

The EEPROM display window shows the value
in each of the 16 addresses, when the
flowsheet uses the READ and WRITE
commands.

 12

Displaying and using BASIC

PIC-Logicator is able to convert any complete
flowsheet into BASIC.

BASIC is a text based language that is used
throughout the world to program everything
from PIC microcontrollers to Personal
Computers.

Why Convert?

PIC-Logicator flowsheets are easy to
understand and quick to build. BASIC
programming languages offer more complexity
to advanced level users and the ability to covert
a flowsheet into BASIC offers a way of learning
how BASIC programs are written.

Converting a flowsheet into BASIC

1. Design your flowsheet as normal and
test the program using the flowsheet
simulation tools provided in PIC-
Logicator.

2. From the PIC menu, choose Convert

flowsheet to BASIC.

3 The Flowsheet BASIC Conversion
window is displayed containing the
conversion of your flowsheet.

Notes:

Only commands that are in the flow of your
program are converted.

Code in the Flowsheet BASIC Conversion
window can be edited and then re-programmed
into the selected type of PIC.

Converting the PIC-Logicator flowsheet into
BASIC always overwrites any changes made to
the code inside the BASIC Conversion window.

It is not possible to convert from BASIC to a
flowsheet.

You can use the mouse to select text in the
code window. Right click on the selection to
copy the selection to the clipboard. The code
can then be pasted into software such as
Revolution’s Programming Editor.

Using the BASIC command in PIC-Logicator you
can add sections of BASIC code into a
flowsheet. Whilst this is not simulated in the
PIC-Logicator software, you can make use of
BASIC code that you might have available. See
the PIC-Logicator help for full information on
the BASIC command.

For full information on the use of BASIC to
program PIC chips see the PICAXE website at
www.picaxe.co.uk.

 13

Downloading a flowsheet

PIC-Logicator can program either PICAXE chips
direct from the computer (via a download
cable) or a PIC chip via the PIC-Logicator
programmer.

Do not attempt to program PICAXE chips
through the PIC-Logicator programmer unit.
Doing so may risk erasing the bootstrap code
from the PICAXE chip.

Programming a PICAXE chip

1. Connect your PICAXE project to the
serial port of the computer by the
download cable.

2. Connect power to the PICAXE circuit
board.

3. Note; your PICAXE chip, if already
programmed may start running the
program from its memory – this will not
affect the programming process.

4. Click the Program PIC button on the

toolbar or PIC>Program PIC menu
option.

5. The programming progress window will
appear.

6. Programming times vary depending on
the type of chip and amount of program
code – the larger the flowsheet, the
longer the programming time.

7. If successful, programming is complete
when the progress window disappears.

Programming process window

Using the PIC-Logicator Programmer

1. Use the serial lead to connect between
the socket on the Programmer marked
“TO COMPUTER” and the serial port
socket of your computer.

2. Use only the power supply supplied in
the PIC-Logicator Pack. Plug the power
supply lead into the socket on the
Programmer marked “POWER 9V DC”.
Plug the power supply into a convenient
mains socket. The green LED marked
“POWER” will come on.

3. Lift the Zero Insert Force (ZIF) socket
lever into its upright position.

4. The legend on the Programmer
indicates correct positioning of 18 and
28 pin chips. Carefully insert a PIC
microcontroller chip into the appropriate
sockets, and return the lever to its down
position.

5. PIC-Logicator software should be
running, and the current flowsheet
should be the one that you want to
download. Click the “Program PIC”
menu option or the toolbar icon.

6. The yellow LED marked “ACTIVE” will
come on, and the Download bar will be
displayed in the software. After about
20 seconds, the yellow LED will switch
off and the Download bar will disappear.
Downloading is now complete.

7. Lift the ZIF socket lever into its upright
position. Carefully remove the PIC
microcontroller chip which is now
programmed with your control
flowsheet. To reprogram a PIC
microcontroller chip, remove it from the
project circuit and follow the same
procedure to download the revised
flowsheet. There is no need to erase the
chip before reprogramming.

 14

Outputs

Outputs command

Use an Outputs command to switch on or off
any output devices that are connected to the
outputs of a PIC microcontroller.

The “Output Pattern” line of its Cell Details box
(fig. 2.1) shows the number of outputs
available for use.

Fig 2.1. Outputs
command Cell

Details box

Each one of the digits in the Output Port
represents one of the outputs on the PIC
microcontroller. You can click each digit to set it
to switch an output device on or off.

 This means: switch this output on.
 This means: switch this output off.
 This means: ignore this output. Leave it

in the state in which it was set by the previous
Outputs command.

Wait command

A Wait command makes a running flowsheet
pause for the number of seconds specified
before the next command is carried out. You
can use it to keep output devices switched on
or off for a set time. Use its Cell Details box to
enter a number of seconds (Max 65s. Min
0.001s) or a Variable.

Example
A PIC microcontroller has 3 LEDs connected to
outputs 0, 1 and 2. The flowsheet shown in fig.
2.2 will switch them on and off in a timed
sequence. The sequence will begin as soon as

the chip is powered and will stop at the STOP
command, so it will do the sequence just once.

7 6 5 4 3 2 1 0
0 0 0 0 0 0 0 1

7 6 5 4 3 2 1 0
0 0 0 0 0 0 1 -

7 6 5 4 3 2 1 0
0 0 0 0 0 1 - -

7 6 5 4 3 2 1 0
0 0 0 0 0 0 0 0

Fig. 2.2

The flowchart shown in fig. 2.3 will continue to
repeat the sequence until power to the chip is
switched off. Notice that another Wait
command has been added to the repeating
sequence. The PIC microcontroller operates so
quickly that, without Wait commands, the LEDs
would switch on and off so quickly that you
would not see it happening.

Fig 2.3.Repeating timed sequence.

 15

Out Command

When flow passes through an Out command,
the output port is set to the binary value of the
number entered in the command.

If you are familiar with the binary system then
the Out command is a convenient way of
switching combinations of outputs on or off.

Sound Command

Use a Sound command to send a pulsed signal
to a piezo sounder connected to an output of a
PIC microcontroller. You can use a sequence of
sound commands to play a simple tune.

There are two ways to view the cell details for
the Sound command. Simple allows the setting
of note, time and pin from drop down lists
(Figure 2.4), whereas the Advanced option
allows the selection of note via a ‘keyboard’
style layout (Figure 2.5).

The notes used in PIC-Logicator are true
sampled wav files, but the notes played by the
PIC may vary due to the limitations of the
pulsing of the piezo sounder.

Fig 2.4. Simple Sound command cell details

Fig 2.5. Advanced Sound command cell details

Motor command

The Motor command allows you to use pairs of
outputs on a PIC microcontroller to switch a
motor forward, reverse or off.

Use its Cell Details box to set the motor or
motors to drive forward or reverse; or to stop.

Remember that the direction in which a motor
turns depends on which way current flows
through it, and therefore on the way it is
connected to power. For this reason, the
direction arrows indicate only that the
directions will be different; not the actual
direction in which motors in the project will
turn.

Fig. 2.8. Motor command Cell Details box.

Motors are labelled A,B,C or D. Motor A is the
motor controlled by outputs 0 and 1 of the PIC
microcontroller. Motor B is the motor controlled
by outputs 2 and 3, and so on. See “Connecting
Motors” (page 55).

NOTE: Outputs and Motor commands both use
the same output lines to switch the outputs of a
PIC microcontroller. The default state of both
commands is such that they will automatically
switch off any outputs that are not set ‘on’.

So, to avoid inadvertently switching off an
output device, un-check the select boxes of
unused motors in a Motor command to disable
them, and set unused outputs in a Outputs
command to their ‘ignore’ state.

 16

Example

A steerable buggy is usually driven by two
motors, one powering each driving wheel with a
free-running jockey wheel to keep it stable. Fig
2.9 shows how a sequence of Motor
commands can be used to drive a buggy which
has one motor connected to outputs 0 and 1
(motor A) and the other motor connected to
outputs 2 and 3 (motor B).

Fig 2.9. The Motor commands have been given labels to
show what they do. The table beside each one shows

how its Cell Details have been set.

Sleep command

This command puts the PIC microcontroller into
low power mode for a specified number of
seconds.

You can use this command to save battery
power in your project. All output devices will be
left in their current condition, but signals from
input devices will not be responded to while the
chip is in sleep mode.

Use the Cell Details box to set the number of
seconds of sleep mode you require (this is in
the form of number of multiples of 2.3
seconds). For example, a setting of 10 will
sleep for 23 seconds.

Note that Sleep times are not as accurate as
Wait times.

SerOut Command

This command allows you to output information
from the PIC microcontroller to a device such
as a serial printer, a serial LCD screen or
another PIC which is connected to an output of
a PIC microcontroller.

Use the first box to select the output pin on the
PIC microcontroller to send the data through.

In the Data box either type in the ASCII text you
wish to send or raw data. If sending raw data
codes you must un-check the ASCII box.

ASCII codes are useful for sending commands
to LCD screens e.g. clearing the display. Details
of these control codes can normally be found
with the instructions for the particular devices.

 17

You can send a series of text characters e.g.
“Hello” or a series of ASCII codes e.g. “254,1”.
In the latter case, ASCII codes must be
separated by a comma.

If you wish to send the value held in a variable,
type in the variable name in square brackets
e.g. “[B]”. Note you must use capital letters for
the variable.

The last item to set is the serial mode. Set the
mode to that specified by the device you are
sending data to.

Example
The flowsheet shown in fig 2.11 will display the
word “Hello” on an LCD screen connected to
output pin 7 of a PIC microcontroller.

Fig 2.11. A sequence to display the word Hello.

Servo Command

Servos, as commonly found in radio control
toys, are a very accurate motor/gearbox
assembly that can be repeatedly moved to the
same position due to their internal position
sensor. Generally servos require a pulse of
0.75 to 2.25ms every 20ms, and this pulse
must be constantly repeated every 20ms. Once
the pulse is lost the servo will loose its position.

The Servo command starts a pin pulsing high
for length of time pulse (x0.01 ms) every 20ms.
This command is different to all other
commands in that the pulsing mode continues
until another servo command or outputs
command. Outputs commands stop the pulsing
immediately. Servo commands adjust the pulse
length to the new pulse value, hence moving
the servo.

The cell details for the servo command (fig
2.12) has two settings; the output pin that the
servo motor is connected to and the pulse time.

The pulse time can be a value held in a
Variable. Note that the value for the pulse time
MUST be in the range 75 to 225. The servo
motor may malfunction if the pulse is outside of
this range.

fig 2.12 Servo command cell details.

Example
The flowsheet in fig 2.13 will move a servo
motor attached to output 0 from one extent of
its travel to the other, repeating continually.

fig 2.13. Using the Servo command.

Always use a separate 6V (e.g. 4x AA cells)
power supply for the servo, as they generate a
lot of electrical noise. See section 2 of this
manual for more information on connecting
servo motors to PIC microcontrollers.

Note that the processing time required for
processing the servo commands every 20ms
causes the other commands to be slightly
extended i.e. a pause command will take
slightly longer than expected. The servo pulses
are also temporarily disabled during timing
sensitive SerIn and SerOut, commands.

 18

 PulseOut Command

The PulseOut command generates a pulse
through the chosen output. If the output is
initially off, the pulse will be on, and vice versa.

There are two items to set in the cell details box
for the PulseOut command (fig 2.14); the
output pin to send the pulse through, and the
length of time that the pulse should exist for.

The time is in 10µs intervals, but for easier
reading, the text area in the command converts
this to milliseconds as the time is entered into
the command. PulseOut times must be in the
range 1 – 65535.

Note that PIC-Logicator cannot simulate the
action of the PulseOut command.

fig 2.14. PulseOut cell details box.

Example

The flowsheet in fig 2.15 sends a pulse of
15ms out of output pin 4 every half second.

fig 2.15. Using the PulseOut command.

PlayTune command

The PICAXE-08M can play musical tones. The
PICAXE-08M is supplied with 4 pre-
programmed internal tunes, which can be
output via the PlayTune command.

As these tunes are included within the PICAXE-
08M bootstrap code, they use very little
program memory.

The cell details require that the number of the
tune is set and if you wish the outputs to flash
in time to the tune.

The Tunes are:

0 - Happy Birthday
1 - Jingle Bells
2 - Silent Night
3 - Rudolf the Red Nosed Reindeer

The Flash modes are:

0 - No outputs
1 - Output 0 flashes on and off
2 - Output 4 flashes on and off
3 - Output 0 and 4 flash alternately

The following example will play Jingle Bells
while flashing output 4.

PIC-Logicator cannot accurately simulate the
flashing actions of the PlayTune command.

It is possible within the Programming Editor
software available from Revolution Education,
to program your own tune into a PICAXE08M.

 19

Play User Tune Command

Working in a similar way to the PlayTune
command, the Play User Tune allows special
musical tunes to be played using the
PICAXE08M.

The difference with the Play User Tune
command is that it converts RTTTL mobile
phone ringtone files to PICAXE tunes and plays
them with or without flashing outputs.

RTTTL ringtone files are freely available on the
internet (there is a very wide range of tunes
available) and these can be downloaded as
small text files. The files contain the notes and
timings that make up the tune. PIC-Logicator
converts these ringtones to a PICAXE tune upon
download.

figure 2.16, Play User Tune cell details box.

Once you have downloaded your ringtone file
(ensure it is an RTTTL format), save it to disk
and open the cell details box for the Play User
Tune command (see fig. 2.16).

Click the ‘Select Ringtone…’ button to browse
the computer to find the file.

Select the LED flash mode that you require
using the drop down box. The chosen outputs
switch on/off in time to the tune. The Flash
Mode can switch outputs 0 and 4. Ensure that
you have configured the I/O pin 4 as an output
using the Select PIC dialog in order to see all of
the available options.

Note that unlike the PlayTune Command, the
User Tune requires much more memory in the

chip as all of the notes have to be specially
programmed into the chip. If wanting to play
your tune a number of time, use the Play User
Tune command in a Procedure to save
memory.

 20

Inputs

Input devices such as switches and sensors
send information from the outside world into
the control system. Output devices are
switched on or off in response to the
information provided by input devices.

Example one

A buggy is often fitted with micro-switches so
that if it approaches an obstacle, a microswitch
will be pressed.

The information that the switch has been
pressed can be used in the system to switch off
the motors driving the buggy, and start a
sequence of movements to move around the
obstacle.

A microswitch is a digital sensor. It has only two
states - “on” (or “closed”) and “off” (or “open”).
These states are often labelled by the digits 1
and 0, which is why the sensors are called
digital sensors.

Example two

A controlled hot water system includes a
temperature sensor which constantly monitors
the water temperature.

The water heater is switched on and off in
response to the information provided by the
sensor. If the water temperature falls below a
set level, the heater is switched on until it
reaches that level again. Then the heater is
switched off.

A temperature sensor is an analogue sensor. It
provides a reading which changes in line with
the changing level of whatever it is sensing.

 21

Digital Inputs

Decision command

Use this command to test the state of a digital
sensor connected to a digital input of a PIC
microcontroller.

When flow reaches a Decision cell, it continues
in either the Yes or No direction depending on
the result of the decision test. See fig 3.1.

Fig 3.1. This Decision command is testing the state of a
microswitch. If the switch is pressed, flow will go in the

Yes route; if it is not pressed, flow will go in the No route.

The Cell Details box of the Decision command
is shown in fig 3.2. The Input Pattern area
shows the number of digital inputs available for
use on the PIC microcontroller you have
selected. Any unavailable inputs are shown
without a number label and cannot be clicked
upon.

Fig 3.2. Decision Cell Details box for a PICAXE18X chip
(five inputs).

Each one of the digits in the Input Port
represents one of the digital inputs on the PIC
microcontroller. You can click each digit to set it
to one of three states:

 This means is this sensor ON?
 This means is this sensor OFF?
 This means ignore this sensor.

Drawing routes from a Decision
command

The first line that you draw from a Decision
command is the “Yes” direction, and the
second line is the “No” direction.

Tip; you can swap the “Yes” and “No” routes by
right clicking on the Decision and choosing
“Swap Yes/No”.

Example one

A PIC microcontroller is being used to control a
security system. A buzzer is connected to one
of the outputs. A pressure pad is connected to
input 0, and a push switch is connected to input
1.

Fig 3.3 is a flowsheet for the control system,
showing how the two Decision commands are
set. When the chip is powered, the pressure
pad is tested. If it is not pressed, flow will go in
the N route and will continue to go round this
loop until the pad is pressed. When the pad is
pressed, flow will go in the Yes route and the
buzzer will be switched on. The buzzer will stay
on until the push switch is pressed. When it is
pressed, the buzzer will switch off and flow will
return to testing the pressure pad.

Is the pressure
pad pressed?

Is the push switch
pressed?

Fig 3.3. Security system.

7 6 2 1 0
- - - - - - - 1

7 6 2 1 0
- - - - - - 1 -

 22

A similar flowsheet could be used to control a
security system for a drawer. In this case, the
sensor could be a micro-switch which is kept
closed (on) as long as the drawer is shut. If
someone opens the drawer, the microswitch
will be open (off).

Fig 3.4 shows two different ways of using a
Decision command to test the micro-switch in
this system.

Is the sensor off?
(drawer open?)

Is the sensor on?
(drawer shut?)

Fig 3.4. Notice that the direction of flow depends on how

the command is set.

Example two
Home security systems often have a number of
sensors in different parts of the house. If any
one of them is activated, the alarm is switched
on. Fig. 3.5 shows a security system which has
three sensors and a reset switch.

Fig 3.5. Security system with three sensors (OR
function).

Two of the sensors are the magnetic type for
windows which have the magnet fixed to the
window frame and the reed switch fixed to the
window. As long as the window is shut, the
magnet keeps the reed switch contacts closed
(“sensor on”). When the window is opened and
the magnet is moved away from the switch, the
contacts are open (“sensor off”). Therefore, the
two Decision commands have been set to go in
the Yes route if the sensor is off (0).

The system shown in fig 3.5 is an OR function.
Some security systems have two separate reset
switches arranged in an AND function so that
the system is reset only if both switches are
pressed together. Fig 3.6 shows how you can
set a Decision command to test two switches in
this way.

Fig 3.6. Decision command set to check if two switches

are pressed at the same time (AND function).

Example three
In the flowsheet shown in fig 3.7, the output is
switched on when a push switch is pressed.
When you stop pressing the switch the output
switches off. In other words: IF the input is on,
THEN switch the output on, ELSE switch the
output off.

Fig 3.7 “Normally open” switch effect.

This is the equivalent of a simple electrical
circuit containing a normally open push switch
and an output device. The big difference is that
you can change the way the system works in
software, by simply changing over the Yes and
No on the Decision command as shown in fig
3.8.

7 6 2 1 0
- - - - - - - 0

7 6 2 1 0
- - - - - - - 1

7 6 2 1 0
- - - - - 1 1 -

 23

Fig 3.8 “Normally closed” switch effect.

Example four
A mono-stable device has only one stable state.
It changes state when it is triggered by an
input, and stays in that state for a certain time.
It then goes back to its original state. Fig 3.9
shows how this function can be produced in
PIC-Logicator.

Fig 3.9 “Mono-stable”
function.

Example five
A bi-stable device has two stable states. It
changes state when it is triggered (set) by an
input, and stays in that state until it is triggered
(reset) by a second input. It then goes back to
its original state. Fig 3.10 shows how this
function can be produced in PIC-Logicator.

Fig 3.10 “Bi-stable”
function using two

switches for set and reset.

Fig 3.11 shows how you can use just one
switch for both set and reset. In this case the
Decision commands are used in pairs.

The first one checks to see if the switch is
pressed, and the second one checks for it to be
un-pressed before the output is switched. The
program is processed so fast that, if you didn’t
include this feature, it would switch the output
and start checking the switch again while you
were still pressing it for the first time.

Fig 3.11 “Bi-stable” function using one switch for both
set and reset

 24

Interrupt (PICAXE only)

An Interrupt instantly captures the flow of
control whenever a preset digital input
condition occurs to trigger it e.g. when a switch
is pressed.

When the interrupt is triggered flow jumps
immediately to the Interrupt command and
then carries out any commands which follow
until it reaches an End command. It then
returns to the point which it was at when the
Interrupt occurred.

In order to use an Interrupt, the PIC must be
told to look for the input condition. This is done
through the Interrupt Setup command. There
are two options in the command – Enable or
Disable.

To prevent the Interrupt re-
triggering itself, the Interrupt
is automatically disabled once

it is triggered. To re-enable it another Interrupt
Setup command is required.

Example
A PIC microcontroller running a continuous loop
flashing lights needs to be able to react to a
button press and play a warning sound.

The Interrupt is used to capture the flow and
play a sound. The interrupt is then enabled
once again before returning to the point at
which it left the main flow.

Note that the Interrupt MUST have an
associated End command and will not be

triggered again until this End command has
been reached. There is no limit to the number
of commands between the Interrupt and the
End.

Only one Interrupt can be used per flowsheet.

SerIn Command

The SerIn command is a PICAXE only command
used to receive serial data into an input pin of
the microcontroller. It cannot be used with the
serial download input pin, which is reserved for
program downloads only.

The cell details box for the SerIn command has
three boxes to set.

SerIn command cell details box.

The input pin is the input on the PICAXE that
the data is to be received through. The
Variable option is a variable location that the
data is stored into once it is received.

Lastly, the mode option specifies the baud rate
and polarity of the signal. When using simple
resistor interface, use N (inverted) signals.
When using a MAX232 type interface use T
(true) signals. The protocol is fixed at N,8,1 (no
parity, 8 data bits, 1 stop bit).

For best results do not use a baud rate higher
that 2400 on 4Mhz chips.

The SerIn command forces the PICAXE chip to
wait until serial data is received through the
chosen input. This data is stored in the chosen
variable.

 25

Example

Serial data is being received from another PIC
chip and needs to be stored in the EEPROM.

Using the SerIn command to receive serial data.

In the flowsheet shown above, the serial data is
read into Variable A through input pin2. The
Write command is used to store the value in
Variable A in the EEPROM. This process is
repeated 16 times to fill all the available
EEPROM memory locations.

PulseIn Command

The PICAXE only command, PulseIn measures
the length of a pulse through an input pin. If no
pulse occurs within the timeout period, the
result will be 0.

If State = 1 then a low to high transition starts
the timing, if state = 0 a high to low transition
starts the timing.

There are three items to set in the PulseIn
command; the input pin, the State and the
Variable to store the result in. The result is
measured in multiples of 10µs and is in the
range 1 – 255.

Cell details box for the PulseIn Command

Use the Count command to count the number
of pulses with a specified time period.

Because the PulseIn Command works so
quickly this command cannot be simulated in
the PIC-Logicator software.

Count Command

The PICAXE only command, Count, is available
on the PICAXE08M, 18X and 28X. The Count
command checks the state of the input pin and
counts the number of low to high transitions
within the time ‘period’. Up to 255 transitions
can be counted.

The cell details box for the Count command.

Take care with mechanical switches, which
usually cause multiple ‘hits’ for each switch
push as the metal contacts ‘bounce’ upon
closure.

 26

Analogue Inputs
If you want to use analogue sensors in a
project, you must use a PIC microcontroller that
has analogue inputs (see page 58). All PICAXE
chips have at least one analogue input.

Calibrating sensors
All analogue sensors connected to a PIC
microcontroller provide information on the
conditions they are sensing, simply as a
number between 0 and 255. So, when you
have made a sensor as shown on page 58, you
will need to calibrate it.

For example, if you are using a temperature
sensor, you will need to know the equivalent in
degrees centigrade of the numbers (0 to 255)
that it provides. If you are using a light sensor
in a system in which output devices are
switched on and off at different light levels, you
will need to know the number that the sensor
provides when it is actually placed in each one
of those light levels.

The PIC-Logicator Analogue Calibration Board
allows you to calibrate your sensors in this way.
Connect the sensor to the board as shown in fig
3.15, and make a note of the number between
0 and 255 that is displayed when the sensor is
placed in different conditions.

Fig 3.15 PIC-Logicator Analogue Calibration Board with

light sensor connected.

Compare command
Use this command to check the reading from
an analogue sensor connected to an analogue
input of a PIC microcontroller. The most
common use of an analogue sensor in a control
system is to switch output devices on or off
when the reading from the sensor reaches a
particular level. This level is sometimes called
the “threshold”. When flow reaches a Compare
cell, the software checks the current reading
from the specified sensor, and compares it
with the threshold that you have set. Flow will

continue in either the “Yes” or “No” direction
depending on the result of the comparison. The
Cell Details box of the Compare command is
shown in fig 3.16.

Fig 3.16. Cell Details box of the Compare command.

1. Use box one to select the sensor that
you want the command to check.
Analogue sensors are labelled A0 to A3
according to which pin on the chip they
are connected to. Type in the number of
the sensor you want the command to
check, or select it from the drop-down
box.

2. Use boxes two and three to complete
the comparison. The drop-down list in
box two contains a list of operators such
as “greater than” (>), “less than” (<),
and “equals” (=). Select the one that
you require. NOTE: It is usually better to
use an operator such as “greater than
or equals” (>=) instead of “equals”,
because analogue sensor readings can
fluctuate rapidly, and you may find that
the checking of the sensor reading
never actually coincides with the exact
threshold level.

3. Use box three to set the threshold level.
Type in a number between 0 and 255,
or select it from the drop-down list.

Example one

A PIC microcontroller is being used to control a
lamp. A light sensor is connected to analogue
input 0. The system will switch on the lamp
automatically in dark conditions. Fig 3.17
shows a flowsheet for the system.

 27

Fig 3.17 System to switch on a lamp automatically in

dark conditions.

The Compare command is checking the reading
from the light sensor. If the reading is less than
or equal to 50, flow will go in the Yes route and
switch on the lamp; if the reading is greater
than 50, flow will go in the N route and switch
off the lamp. The system could be extended as
shown in fig 3.18. This system controls three
separate lamps. It automatically switches them
on one by one as darkness falls, and switches
them off in the same way as conditions grow
lighter.

Fig 3.18. System to switch on three lamps in response to

changing light levels.

Example two

A PIC microcontroller is used to make a light
meter for use by cricket or tennis umpires to
decide when to abandon play because of bad
light. A light sensor is connected to analogue
input 0. An LED is connected to each one of the
eight outputs. In bright sunlight, all the LEDs
will be lit. As the light level falls, the LEDs will
switch off one by one. Fig 3.19 shows the
flowsheet for the system. Notice the use of the
Out command to switch on combinations of
outputs.

Fig 3.19. Light meter system.

 28

Using Infrared control

When using PICAXE chips, commands are
available to support Infrared communication
between PICs and TV style remote controls.

InfraIn

To receive information from an Infrared source,
the InfraIn command is used. The command
will wait for a new infrared signal from a
infrared TV style transmitter. It can also be
used to receive an InfraOut signal from a
separate PICAXE08M chip.

All processing stops until the new command is
received. The value of the command received is
placed in the chosen Variable.

The cell details are simple; only a Variable must be set.

The infra-red input is input 0 on all 18 and 28
pin PICAXE chips that support this command.
When using the PICAXE08M, input 3 must be
used.

The basic circuit required for InfraIn is as
follows. The device on the left side of the circuit
is an IR receiver LED, part code LED020.

Example

To receive a signal from a TV Infrared remote
control and switch on lights if key 1 is pressed,
requires the following flowsheet.

The InfraIn command waits until a signal is
received, and saves this as a number in
Variable A.

The Compare determines is this is ‘1’ and the
Yes route switches on the lights.

InfraOut

This command (only for the PICAXE08M) is
used to transmit the infrared data to a Sony™
protocol device (can also be used to transmit
data to another PICAXE that is using the InfraIn
command).
Data is transmitted via an infra-red LED
(connected on output 0) using the SIRC (Sony
Infra Red Control) protocol.
When using this command to transmit data to
another PICAXE the Device ID used must be
value 1 (TV).

The InfraOut command can be used to transmit
any of the valid TV commands (0-127). Note
that the Sony protocol only uses 7 bits for data,
and so data of value 128 to 255 is not valid.

Infrain

PICAXE

330R 4K7

4.7uF
+

 29

Procedures
PIC-Logicator software provides a clear, step-
by-step method of building a complex control
system, by creating a number of linked sub-
systems called “procedures”. Note that
Procedures were previously known as
“Macros”.

How to build a procedure

Use a Procedure command to begin the
procedure. Drag the command onto the
flowsheet and place it separately from the
START command as shown in fig 4.1. Double
click on the command to open its Cell Details
box. Type in any appropriate name, and click
OK. The software automatically puts the name
into capitals.

Fig 4.1. Placing the Procedure command.

Use other commands as normal to create the
procedure. Place an END command at the end
of the procedure as shown in fig 4.2.

This command does not have a Cell Details
box; simply place it on the flowsheet.

Fig 4.2. This procedure, called FLASH will switch on

selected lamps for 3 seconds and then switch them off.

When you have created a procedure, you can
test run it. Click on the Procedure command to
select it, and click System>Run

How to use a procedure

Once you have built a procedure, you can call it
into use whenever you like in the flowsheet by
using the Do Procedure command, as shown in
fig 4.3.

Fig 4.3. The Do Procedure command calls the procedure

into use.

Drag a Do Procedure command onto the
flowsheet. Place it at the point where you want
the procedure to be called into use. Double
click on the command to open its Cell Details
box. Type in the name of the procedure or
select it from the drop-down list. Click OK.

Note that all the procedures that have been
built in a flowsheet are automatically listed in
the drop-down box. When flow reaches a Do
Procedure command, it jumps to the Procedure
command with the same name. When the flow
of control reaches an End command, the flow
jumps back to the Do Procedure command that
called the procedure. To test run the whole
flowsheet, click on the START command to
highlight it, and click System>Run

In the cell details box for the Do Procedure
command it is also possible to set the number
of times top run the Procedure. This will simply
repeat the Do Procedure for the set number
and then continue as normal.

 30

Example one
A PIC microcontroller is used to control a
system in a child’s toy which plays a tune when
it is hugged. A piezo transducer is connected to
an output pin, and a push switch is used to
sense when the toy is hugged. The flowsheet
for the system is shown in fig 4.4. The tune is
created as a procedure which can be tested
and edited separately from the main routine.

Fig 4.4. Using a Procedure to play a tune after an input

condition is met.

Example two

The flowsheet shown in fig 4.5 is a control
system for a sliding door. When a switch is
pressed, the door opens. It stays open for ten
seconds and then closes again. The system
uses limit switches to sense when the door is
fully open and fully closed. The motor is halted
in response to the feedback from these micro-
switches.

Fig 4.5. Sliding door control system using procedures.

 31

Example three
A keypad is a useful input device. This example
shows how the PIC-Logicator software can be
used to scan a keypad in a project in which a
three digit number has to be entered to open a
solenoid-operated lock.

Connect the keypad to a PIC microcontroller
using inputs and outputs as shown in fig. 4.6.
The flowsheet in fig. 4.7 shows how the
scanning is done.

In this case, the code number uses a digit from
each one of the first three rows (e.g. 357 or
268). Each row is scanned in turn using a
procedure.

To begin with, the row is made “live” by
switching on the output to which it is
connected. Then a Decision command checks
for the appropriate key in that row to be
pressed, by testing for that input to be on.
When the correct key is pressed, flow passes
on to the next procedure. When all three digits

have been entered correctly, the solenoid is
switched to unlock the door.

Fig 4.6. Keypad connections.

Fig 4.7. Flowsheet to scan the keypad.

 32

Designing systems with procedures
Using procedures, you can design and test
systems either “top-down” or “bottom-up”

Example one

The “top-down” approach.

This approach begins with an overall view of
the system (the main routine), and then creates
each part of it separately as a procedure. The
following sequence shows how it can be used
to develop a control system for a buggy which is
fitted with micro-switches that are pressed if
the buggy comes into contact with an obstacle.
When this happens, the buggy sounds an alarm
and moves round the obstacle.

1. The main routine is created as a series
of Do Procedure commands as shown in
fig 4.8.

2. Then each part of the system is built as
a separate procedure as shown in fig
4.9. Each procedure can be test run
independently.

Fig 4.8. Main routine.

Fig 4.9. Notice that the AVOID procedure uses the top-down approach, so the flowsheet is incomplete at this stage.

 33

3. The AVOID procedure shown in fig 4.9 has

been built by using the top-down approach. To
clarify the avoiding procedure, each
movement is simply listed as a Do Procedure
command. Then the details required for the
buggy to make each movement can be dealt
with separately as shown in fig 4.10.

Fig 4.10. This flowsheet illustrates the way in which procedures may be called from within other procedure definitions.

 34

Example two

The “bottom-up” approach.

This approach develops each part of the system separately as a
procedure, and then writes the main routine to link them. The
following sequence shows how it can be used to develop a control
system for an animated clown’s head on which the eyes and nose
light up and the hat rotates.

1. A separate procedure is built and tested for each one of the
three elements, as shown in fig 4.11.

Fig 4.11. In this approach, the procedures are created first.

2. A main routine is then written to call the procedures into use in the required sequence
whenever a switch is pressed (Fig 4.12).

Fig 4.12. The complete system.

This flowsheet shows some of the advantages of using this approach. Once a procedure has been
created, it can be called into use as many times as you like within the flowsheet. Editing the sequence
is easy.

The Do Procedure commands can be moved around, deleted or copied to change the sequence as
required. Procedures can be cut, copied and pasted between flowsheets. Remember that copied
commands will retain their existing cell details.

 35

Variables

In PIC-Logicator a variable is a single letter or a
keyword that can be given a value. The
variables that can be used are: any one of the
single letters A to H. This section explains how
they can be used for a variety of mainly
counting and timing purposes.

Counting

The Inc command
Each time flow passes through an

Inc command, 1 is added to the value of the
selected variable (Inc is short for increment).

When you open the Cell Details box, simply
select which variable you want to use, and click
OK.

The flowsheet shown in fig 5.1 shows how it
can be used to repeat a sequence three times.
Each time that flow goes round the loop, the
FLASH procedure is done, and one is added to
the value of variable A.

A Compare is used to check the value of A.
When this value reaches 3, flow will go in the
Yes direction and stop the flowsheet.

Fig 5.1. Repeating a sequence three times.

Fig 5.2. Cell Details box of the Compare command.

1. Use box one to select the variable that
you want the command to check.

2. Use boxes two and three to complete
the comparison. The drop-down list in
box two contains a list of operators such
as “greater than” (>), “less than” (<),
and “equals” (=). Select the one that
you require.

3. Use box three to set the number of
times the sequence will repeat. Type in
a number between 0 and 255, or select
it from the dropdown list.

Another use of the Inc command is to count the
number of times something happens – the
number of people passing through a gate or
turnstile for example. This is often done by
using a digital sensor such as a micro switch or
a reed switch placed so that the sensor is “on”
when a person passes. Fig 5.3 shows the three
commands needed to do this. Notice that two
Decision commands are used to check the
switch. The first command responds when the
sensor is on. Then the sensor is immediately
checked again to see that it is off before
anything else happens. This ensures a clean
signal for the Inc command to count.

Fig 5.3. Ensuring a clean signal from a digital sensor.

 36

You may well find that once it is downloaded
into the chip, the flowsheet runs so quickly that
even using the two Decision commands does
not give a clean count. If this is the case, you
should include a short Wait before the Inc
command, as shown in fig. 5.4. This flowsheet
is for a system to count the number of people
passing through a turnstile and to display the
number in binary form, using LEDs connected
to each one of the eight outputs on a PIC
microcontroller.

Example one
A PIC microcontroller is used to control a
system for counting cars entering and leaving a
car park using two digital sensors. The outputs
of the system are a red lamp lighting a “Full”
sign, and a green lamp lighting a “Spaces” sign.
The flowsheet for the system is shown in fig
5.5. When you test run this flowsheet, display
the Variables window to see the changing value
of A.

This system uses the Dec command which
works in a very similar way to the Inc command.
The difference is that when flow passes
through a Dec command, one is subtracted
from the selected variable.

Fig 5.4. Flowsheet for making and displaying a count.

Fig 5.5. Car park counting system

 37

Example two
A seven-segment display is a useful output
device for displaying counting and timing. The
flowsheet in fig. 5.6 is designed to control the
kind of supermarket delicatessen counter
system in which customers take a ticket and
then wait for their turn to be served when their
number is displayed. When the assistant has
served a customer, he or she presses a switch
to display the next number.

The main routine uses an Inc command to
increment (add one to) the value of the variable
A each time the assistant presses the switch.
The DISPLAY procedure makes an efficient way
of translating the current value of A into an
Outputs command which is set to switch on the
appropriate number of outputs to display the
number.

A similar approach could be used with an LCD
screen. In this case, the DISPLAY procedure
would use a series of SerOut commands as
shown in fig. 5.7.

Fig 5.7. Part of an equivalent system that uses an LCD
screen to display numbers.

Fig 5.6. A “Now Serving....” display system.

 38

Timing

To repeat a sequence for a period of time, the
Inc command can be used to count the elapsed
time. The flowsheet shown in fig 5.8 shows how
it can be used to repeat a sequence for 10
seconds.

Fig 5.8.Repeating a sequence for 10 seconds.

A Compare is used to check the value of
Variable A. When this value reaches 10, flow
will go in the Yes direction and stop the
flowsheet. Since we know that the FLASH
Procedure will take 1 second to complete,
repeating this for 10 times will take 10
seconds.

Setting the value of a variable

The Expression command

The Expression command is used to give a
value to a variable as a flowsheet runs. The
variable is given its value as flow passes
through the command. The following example
shows how it can be used.

Example one
A container in a warehouse is designed to hold
ten packs of components. A system is needed
to indicate the changing contents of the
container as packs are removed. The flowsheet
shown in fig 5.10 is designed to do this. A
digital sensor is used to indicate each time a
pack is removed (notice the use of two
Decision commands to ensure a clean count).

The number of packs in the container is
displayed as a binary count using 8 LEDs
connected to outputs of the PIC
microcontroller.

Fig 5.10. Counting Down

The Dec command counts down, so an
Expression command is used to set the value
of variable A to 10 at the start of the
countdown when the container is full. The
Expression command Cell Details box is shown
in fig. 5.11. Use the first two boxes to enter the
expression A = 10.

Fig 5.11. Expression command Cell Details box Setting
the value of a variable

Mathematical expressions

A value can also be given to a variable in the
form of a mathematical expression as shown in
the flowsheet in fig 5.12. This system counts
the number of times that two separate
switches are pressed, and displays the
combined total. Use all four boxes in the
Expression Cell Details box to enter the

 39

expression C=A + B. NOTE: the third box in the
Expression Cell Details box contains a range of
mathematical operators.

Fig 5.12. Displaying a combined count.

IN and RND
The IN command sets the value of a specified
variable to the current binary value of the input
port.

For example, if switches connected to inputs 0
and 1 are pressed, then the value of the
variable will be 3. The flowsheet in fig 5.13
shows how this can be used to make a simple
security system.

When switches connected to inputs 0 and 2 are
pressed at the same time the binary value of
the input port equals 5 (4+1), flow from the
Decision command goes in the Yes direction
and a solenoid-operated lock is opened. If any
other combination of switches is pressed, flow
goes in the No direction.

Fig. 5.13.Simple security system that responds to
pressing two switches.

The RND expression
Within the expression command a Variable can
be given a random value between 0 and 255.
In the example shown in fig 5.14, a set of
display lights for a small Christmas tree are
connected to 8 outputs of a PIC
microcontroller. Every second the display will
change at random.

Fig 5.14.Using the RND command to create a random
display of lights.

Note that as with all microcontrollers and
computers, the generation of random numbers
is based on a set sequence.

 40

 READ and WRITE

When a flowsheet run is started, all variable
values automatically reset to zero. So, when
the PIC microcontroller is reset or powered up,
all variable values are reset to zero.

If you want to retain variable values when the
PIC microcontroller is powered up or reset, you
can use the WRITE command to store values in
the chip’s EEPROM memory. The READ
command is used to retrieve the values from
the chip’s memory. The flowsheet in fig. 5.16
shows an example of how the commands can
be used. The following information explains
how this works.

The READ command takes the value which is
currently stored in a selected address (in this
case address 0), and puts it into the selected
variable (in this case variable A). Use the READ
command Cell Details box (fig 5.17) to enter
the variable and the address from which the
value is to be read.

Fig 5.17. READ command Cell Details box.

The PIC microcontroller’s EEPROM memory has
16 separate addresses. Each one can store a
number between 0 and 255. The EEPROM
window displays the contents of the memory
when you test run a flowsheet.

Fig 5.18 EEPROM window.

The OUT A command in the flowsheet displays
the current value of A using 8 LEDs connected
to outputs of the PIC microcontroller.

The Inc A command increments (adds one to)
the value of A each time a switch is pressed.

The new value of A is immediately stored in
address 0 of the EEPROM memory by the
WRITE command. The Cell Details box of this
command is used in the same way as for the
READ command.

When the PIC microcontroller is powered down,
the value of A is stored in the chip’s memory.
When it is powered up, the first thing that
happens is that the READ A,0 command
retrieves the value of A which has been stored
in address 0. The EEPROM window gives an
accurate simulation of the way these
commands work when the flowsheet is
downloaded.

Fig 5.16. Using READ and WRITE commands to store a
count.

 41

Section Two:

Connecting to the PIC
Microcontroller

 42

PIC Microcontrollers

Note: definitions of terms used in connection
with PICs are in the “Definitions” section on
page 45.

A PIC microcontroller is a single chip that can
be programmed to switch output devices on
and off in sequences and in response to input
from sensors. A microcontroller contains all the
elements of a microprocessor system. This
system, which is the basis of a computer,
consists of a number of separate elements:
CPU, RAM, ROM and I/O. In a microprocessor
system, each of these elements will be in the
form of one or more individual chips. However,
the PIC microcontroller combines all of these
elements in just one chip, that processes
instructions as well as controlling devices.

PICmicro

A PIC microcontroller is a programmable
device, which means that it is able to store sets
of instructions in the form of a program, and
carry out the instructions whenever the
program is run. The code that the chip uses
internally to do this, is called “machine code”. It
is written in hexadecimal and is difficult for
anyone other than a trained programmer to

use. So, a programming language is used to
allow designers to create, edit and download
instructions to the chip. The machine code is
generated automatically from the programming
language.

Programming languages
PIC programming languages come in many
different formats. High level languages such as
PIC-Logicator and BASIC require very little
knowledge of how PICs work and use
commands that are easy to understand
because they tend to use recognisable,
everyday English words. The disadvantage of
high level languages is that programs require
more memory space and run more slowly than
low level ones.

Low level languages (for example, assembler
code) require a much deeper level of
understanding of how the chips actually work.
Their commands are complex and sometimes
obscurely titled. The lower the level of the
language, the nearer it is to the machine code
and the harder it is to understand. On the other
hand, the benefit of using a low level language
is that the finished code is normally very
concise and therefore runs very efficiently and
faster than a higher level language can.

The panel on page 43 shows how the same
simple program would appear in machine code
and in three different programming languages.

CPU

RAM ROM

I/O

Microprocessor System

CPU

RAM

ROM

IO

 43

Code examples
These sections of code simply blink an LED
connected to output 4 once a second.

 PIC-Logicator Example (.plf)

Different types of PIC
PIC chips are available in many different sizes
to suit different applications. Chips in sizes
from 8 pins to 40 pins are available to provide
different numbers of outputs and inputs. Some
provide digital inputs only. Some have ADC
(analogue to digital conversion) built into them
so that analogue sensors can be connected
directly to them. Obviously the larger, higher
specification PICs are more expensive, so it is
important for designers to select the most
appropriate chips for their purposes.
PICs also vary in terms of how they are
programmed and erased. Some PICs are

erasable by UV, some electrically and some not
at all. UV light erasable chips are not widely
used because they need a special UV light
source to erase them and because of the
health and safety problems associated with
using UV light. Most PIC chips are FLASH
reprogrammable which allows them to be
overwritten electrically as many times as
required. These chips have an “F” in their
reference number. The third type of chip is
called OTP (one time programmable) and, as
the name suggests, can only be programmed
once. These chips have a “C” in their reference
number.

Assembler Code Example (.ASM)

PBCX equ 1
include
_loop movlw 004h
call high@
movlw 001h
movwf R0+1
movlw 0F4h
call pause@XW
movlw 004h
call low@
movlw 001h
movwf R0+1
movlw 0F4h
call pause@XW
@GOTO _loop
call end@ Machine Code Example (.HEX)

:10000000031E080086015F308C000D3084008001E3
:10001000840A8C0B07282C282120840007398406A9
:100020000310840C840C840C041A841704128A01B3
:10003000820701340234043408341034203440344C
:10004000803407398A018207303431343234333412
:100050003434353436343734043041200130A30091
:10006000F430482004303D200130A300F430482013
:100070002C283A20073055203A280C20FF3A8005DA
:1000800045280C2080044428FF3A84178005632803
:10009000A2005D2064002308220403190800F73041
:1000A000FF3E031D50285F204A2883160739F83881
:1000B00081006300FF3081006328A309A209A20A1E
:0C00C0000319A30A080083126400080062
:084000007F007F007F007F00BC
:04400E00F53F010079
:00000001FF

BASIC Example (.BAS)

loop: High4
Pause 500
low 4
Pause 500
Goto loop
End

 44

Applications
Millions of PIC chips are used each year in:
electronic consumer goods, mobile telephones,
medical equipment, computer products, and
industrial applications. There will be, on
average, 35 programmable chips in every car,
used in a range of sub-systems from engine
management to remote locking.

Up to 225 chips can be found in every home,
where a typical use would be in a security
system in which a PIC might be used to monitor
the sensors placed around the house and
switch an alarm; as well as enabling features
such as the use of a code, input by a keypad, to
set and reset the system. A microwave oven
may use a single PIC to process information
from the keypad, display user information on a
seven segment display, and control the output
devices (turntable motor, light, bell,
magnetron).

The complex control system for an automatic
washing machine is likely to use PICs. The
system takes in information from devices used
to select different washing programs, and also
from sensors that monitor temperature and
water levels. It is programmed to make use of
this information and switch output devices
such as motors, pumps and heaters on and off
in appropriate timed sequences.

Advantages and disadvantages
One PIC chip can replace a wide variety of
traditional discrete electronic components such
as transistors, logic circuits, 555 timer chips.
This means that products based on PICs can be
smaller and cheaper. They will have fewer
separate parts so they are likely to be more
reliable. The company manufacturing the
products will have reduced stock levels.
Product-assembly will be simpler and therefore
quicker and cheaper.

Using PICs can make products more flexible.
Their features are programmed into the chip,
not built into electronic hardware, so they can
be developed and changed quickly and easily.
If the manufacturer of a product wants to
change a feature of the product, a simple
change to the PIC program can achieve what is
required without the need to alter any of the
components on the PCB.

The main disadvantage of PICs is that they
have only a very low power output, of a few
milliamps. They therefore require interfacing
circuitry to drive higher current loads.

Interfacing to a PIC
A PIC chip does not provide the complete
control system. It should be seen as the
“process” section of the system. It is
programmed with instructions to use
information from the devices in the “input”
section, and switch on and off the devices in
the “output” section.

INPUT PROCESS OUTPUT

 PICmicro

Once the chip has been programmed it is
useless until it is interfaced to the real world.
Interfacing involves providing power to the
circuit, and using standard interfacing circuits
for input and output devices. These include
potential dividers for sensors, and transistor
drivers for output devices. This section of the
book shows the basic interfacing circuits that
are likely to be required for most school
projects.

 45

Definitions

PIC

The letters PIC stand for “peripheral interface
controller”. The full name of this type of chip is
“PIC microcontroller”, but this is often
shortened to “PICmicro” or just “PIC”. PIC is a
trademark of Arizona Microchip inc., the
manufacturers of all PIC chips.

CPU

Central Processing Unit

ALU

Arithmetic Logic Unit. A separate processor
inside the chip to specifically handle
mathematical and logic operations. This is
more efficient than having the main processor
perform these operations.

RAM

Random Access Memory. Memory that can be
accessed as required, with ability to write and
read as necessary. Data stored in RAM is not
held if the power to the chip is turned off.

ROM

Read Only Memory. Memory that can only be
read from and is programmed only once.

I/O ports

Input / Output ports. Connections on the PIC
chip that either connect to input devices such
as switches or output devices such as bulbs
through an appropriate driver. The I/O ports on
PICs can be configured as either inputs or
outputs. Most PIC microcontrollers used with
PIC-Logicator have got the inputs and outputs
preset to simplify programming, but because of
the limited number of I/O pins available on 8
pin devices it is possible to customise which
pins are assigned as inputs or outputs.

PICs commonly have two I/O ports referred to
as PORTA and PORTB. Within each port there
are a number of bits (designated RAx or RBx
(where x is the number of the bit)) which are in
effect the physical pins on the PIC.

CLOCK

All microprocessors operate at a fixed speed
which is referred to as speed or clock
frequency and is quoted in Hertz (Hz). PIC chips
normally run at 4Mhz (Mega Hertz) and in some
cases require an external resonator to regulate
this speed. Most newer type PIC chips have
these resonators built in.

EEPROM

Electronically Erasable Programmable Read
Only Memory. This is memory in the chips
sometimes called FLASH memory that can be
programmed with data and read back. This
memory is still stored even if power to the
device is switched off and is what makes up
most of the data memory in PIC chips.

ADC

Analogue to Digital Converter. Analogue
sensors provide information in the form of
varying voltages, usually between 0 and 5 volts.
Analogue to Digital Converter chips sample
these voltages at regular intervals and convert
them to a digital information which is then sent
out from the chip using serial data
transmission.

Some PICs and all of the PICAXE range contain
the ADC function. For example, the PIC16F872
has 4 analogue inputs which, after conversion,
each give a digital value of between 0 and 255.
So, a temperature sensor connected to the chip
would give a range of readings in which 0°C (0
volts) is converted to 0, and 100°C (5 volts) is
converted to 255. So, there are 2.5 ‘steps’ per
degree change. The range is 0 to 255 because
8 bits are used to make the conversion (255
decimal = 11111111 binary). The higher the
number of bits used for sampling, the higher
the accuracy of the conversion.

In PICAXE chips, certain input pins can be used
as either analogue or digital inputs.

 46

PIC Microcontroller Pin-out diagrams

NOTE:
When you select a chip from the Options>PIC Type menu in PIC-Logicator software, the software
automatically configures itself to display only the input, output and motor options available with that
chip.

8 pin PIC microcontrollers

PICAXE08

PICAXE08M

18 pin PIC microcontrollers

PICAXE18

16F84, 16F84A

PICAXE18A, PICAXE18X

16F627, 16F628

Note: the analogue inputs of the 16F627 and
16F628 are not available in PIC-Logicator
version 2.

1

9 10

18 In 1

In 0

Resonator

Resonator

+5v

Out 7

Out 6

Out 4

Out 5

In 2

In 3

In 4

Reset

0v

Out 0

Out 1

Out 3

Out 2

1

9 10

18 In 1

In 0

In 7

In 6

+5v

Out 7

Out 6

Out 4

Out 5

In 2

In 3

In 4

Reset

0v

Out 0

Out 1

Out 3

Out 2

1 8 0v

Serial Out / Out 0

In 1 / Out 1 / A1

In 2 / Out 2

+5v

Serial In

In 4 / Out 4

In 3

1 8 0v

Serial Out / Out 0 / InfraOut

In 1 / Out 1 / A1

In 2 / Out 2 / A2 / PlayTune

+5v

Serial In

In 4 / Out 4 / A4

In 3 / InfraIn

In 0 / A0

In 7

In 6

Serial In

Reset

9 10

+5v

Out 7

Out 6

Out 4

Out 5

1 18 In 1 / A1 In 2 / A2

Serial Out

0v

Out 0

Out 1

Out 3

Out 2

In 0 / A0 / InfraIn

In 7

In 6

Serial In

Reset

9 10

+5v

Out 7

Out 6

Out 4

Out 5

1 18 In 1 / A1 In 2 / A2

Serial Out

0v

Out 0

Out 1

Out 3

Out 2

 47

28 pin PIC microcontrollers

PICAXE28A, PICAXE28X

16F872, 16F873, 16F876

Out 6

Out 5

Out 4

A1

A2

14 15

Out 3

Out 2

Out 1

+5v

Out 0

1 28 Out 7 Reset

A0

A3

Not used

Not used

Resonator

0v

Resonator

In 0

In 3

In 1

In 2

0v

In 7

In 5

In 6

In 4

Out 6

Out 5

Out 4

A1

A2

14 15

Out 3

Out 2

Out 1

+5v

Out 0

1 28 Out 7 Reset

A0

A3

Serial In

Serial Out

Resonator

0v

Resonator

In 0

In 3

In 1

In 2

0v

In 7

In 5

In 6

In 4

 48

Basic Connections
Power

The PIC microcontroller requires a 4.5 - 5V DC supply. This can be provided by 3 x AA cells. The
following diagrams show connection to 18 and 28 pin chips. The 100nF polyester capacitor is used to
decouple the PIC microcontroller power supply for reliable operation.

Using a low-voltage power supply

In some situations it might be more convenient
to power your project from a low voltage DC
power supply, rather than a battery. If you wish
to do this, you should use a 7805 voltage
regulator as shown in fig. 3.1.

Fig 3.1 Using a 7805 voltage regulator

Using two power supplies

If your project includes an output device which
requires a voltage greater than the 6V that you
are using to power the PIC microcontroller
circuit, use two separate power supplies as
shown in fig. 3.2. This is more efficient and
economical than using a relay.

Fig 3.2 Using separate power supplies to power the
process and output sections of a project.

5V
5V

5V 5V

 49

Resonator
The PIC microcontroller provides a clock pulse internally. The resonator regulates the speed of the
clock pulse, or in other words, sets the speed at which the PIC microcontroller works (4MHz). Most
modern PIC microcontrollers have an internal resonator. Others need to have a 4MHz ceramic
resonator connected as shown in fig. 3.3.

Figure 3.3 Ceramic Resonator

Reset
This pin must also be connected to the 5V rail through a 4k7 resistor as shown in fig. 3.4. You can also
include a reset switch as shown in fig. 3.5, if you like. When you press this switch, the flowsheet
programmed into the chip will restart at the START command.

Fig. 3.4. Connecting the reset pin

Fig. 3.5. Connecting the reset pin to include a reset switch

5V 5V

5V 5V

5V 5V

 50

PICAXE Serial Download Circuit

The serial download circuit is identical for all PICAXE chips. It consists of 3 wires from the PICAXE chip
to the serial port of the computer. One wire sends data from the computer to the serial input of the
PICAXE, one wire transmits data from the serial output of the PICAXE to the computer, and the third
wire provides a common ground.

Note that the two resistors are not a potential divider. The 22k resistor works with the internal
microcontroller diodes to clamp the serial voltage to the PICAXE supply voltage and to limit the
download current to an acceptable level. The 10k resistor stops the serial input ‘floating’ whilst the
download cable is not connected. This is essential for reliable operation.

The two download resistors must be included on every PICAXE circuit (i.e. not built into the cable). The
serial input must never be left unconnected. If it is left unconnected the serial input will ‘float’ high or
low and will cause unreliable operation, as the PICAXE chip will receive spurious floating signals which
it may interpret as a new download attempt.

Download
socket

 51

Connecting Output Devices

Note that diagrams shown in this section show how to connect the output device only. For simplicity,
the PIC microcontroller is simply shown as a block. In each case, the PIC microcontroller must be
connected to power as shown in “3. Basic Connections” (page 48). The position of the output pins on
the block diagram does not necessarily indicate the position of an output pin on a PIC microcontroller
chip. Consult the pin-out diagrams in “2. PIC Microcontroller Pin-out Diagrams” (page 51) to identify
the correct pin to use.

A: Components that can be connected directly to an output pin
The following low current output devices can be switched directly by the PIC microcontroller.

A1. Light Emitting Diode (LED)
An LED can be connected directly to an output pin of the PIC
microcontroller, as shown in fig. 4.1. The resistor is required to
limit the current through the LED.

Fig 4.1 Connection of an LED

A2. Seven Segment Display

A seven segment display is made up of seven LED bars, which can be connected directly to output
pins of the PIC microcontroller, using series resistors, as with individual LEDs. The bars of the seven
segment display can be lit in different combinations to show the ten digits 0 to 9, as well as some
letters of the alphabet. A number of different types of seven segment display are available. You should
use a common cathode type. The common pin connects to 0V.

Fig 4.2 Connection of a seven
segment display. Each LED bar

has an identifying letter.
Consult the pin-out diagram of
the seven segment display that

you are using, to identify the
appropriate pins. This may be

supplied with the component or
it may be in the supplier’s

catalogue

 52

A3. Piezo Sounder
A piezo sounder can be used to produce a range of different sounds. The sound is created by a pulsed
signal. This signal can be sent from any one of the output pins on the PIC microcontroller. Use the
Sound command in PIC-Logicator software to select the sound and the pin to be used. Because the
software is generating the pulsed signal, use a piezo sounder (sometimes called a “piezo transducer”)
without drive circuit.

Fig 4.3 Connection of a piezo sounder

A4. Counter Module

A counter module is an LCD numerical display which can be used to show a changing count value. It is
powered by its own internal 1.5V battery. The counter is incremented by a pulse. Use two Outputs
commands to create a pulse - one to switch the output on; the other to switch it off. Connect the
counter module as shown in fig. 4.4. A potential divider, formed from two resistors, is used to reduce
the PIC microcontroller output signal to the 1.5V required by the counter module.

Fig 4.4 Connection of a counter module

 53

B: Components that require a transistor switching circuit

Higher current output devices cannot be switched directly by the PIC microcontroller chip. They require
a transistor switching circuit. A device that is commonly used for this purpose is a BCX38B Darlington
driver, which is actually two transistors in a single package. This device can switch currents up to
800mA. If you want to switch higher currents than this, you should use a MOSFET as shown on page
54.

B1. Figs 4.5 and 4.6 show how a BCX38B Darlington driver is used to connect a signal lamp and a
buzzer to a PIC microcontroller.

Fig 4.5 Connection of a signal lamp

Fig 4.6 Connection of a buzzer

B2. Output devices such as relays, solenoids and solenoid valves create a back emf when power is
switched off. When you are using one of these devices, it is essential that you connect a back emf
suppression diode across the output device as shown in fig. 4.7.

Fig. 4.7 Connection of an output device such as a relay, solenoid or solenoid valve

5V

5V

5V

 54

B3. If you need to connect a number of output devices to the PIC microcontroller, it will be more
convenient to use a ULN2003A Darlington driver IC as shown in fig. 4.8. This chip contains seven
Darlington transistors similar in value to the BCX38B. It also contains internal back emf suppression
diodes, so no external 1N4001 diodes are needed. A ULN2803A can also be used.

Fig. 4.8 Connection of a number of output devices using a ULN2003A Darlington driver IC

B4. The BCX38B can switch currents up to 800mA. If you want to switch higher currents than this, you
should use a MOSFET as shown in fig. 4.9. The IRF530 is a suitable power MOSFET to use for this
purpose. Note that when using two separate power supplies, it is necessary to link the 0V rails as
shown.

Fig. 4.9 Standard MOSFET circuit

5V

5V

 55

C: Motors

C1. Low-voltage DC motors

The higher quality low voltage DC motors often called “solar motors” are recommended.

The PIC-Logicator system simplifies the control of motors by using the Motor command (see page 15).

The dialog box of this command allows you to select the motor or motors you want to switch, and set
them to drive forward or reverse.

Motors are labelled A,B,C or D. Motor A is the motor controlled by outputs 0 and 1 of the PIC
microcontroller. Motor B is the motor controlled by outputs 2 and 3, and so on. See the “PIC
Microcontroller Pin-out Diagrams” section (page 45) for information on how this works with the
different chip options.

The simplest way to connect motors to the PIC microcontroller is to use a motor driver IC such as the
L293D. This allows you to control either one or two motors. Fig 4.10 shows how to connect one motor.
If you use the two PIC microcontroller outputs 0 and 1 as shown, then you would use Motor A in the
software Motor command to control it.

Fig 4.10 Using the L293D motor driver with a PIC microcontroller

NOTE: Pin 8 of the L293D should be connected to 5V if this is the appropriate voltage for the motor
that you are using. If you are using a higher voltage motor e.g. 12V, then this pin should be connected
to a power supply of this voltage. Maximum current is 1A.

You could connect another motor to pins “Out 3” and “Out 4” of the L293D. It would be controlled by
connecting pins “In 3” and “In 4” to another pair of output pins on the PIC microcontroller. If you were
to use PIC microcontroller outputs 2 and 3, then you would use Motor B in the software Motor
command to control it.

5V

 56

C2. Stepper motors

Stepper motors are very accurate motors that are used in devices such as printers and computer disk
drives.

Unlike DC motors which spin freely, a stepper motor moves round in accurate steps. Each step is
usually 7.5 degrees, so that 48 steps make one complete revolution.

There are two main types of stepper motor - unipolar and bipolar. The unipolar is most commonly used
in school projects and so this is the type shown here. Unipolar motors usually have four coils which
must be switched on and off in a particular sequence to make the motor turn. The table in fig. 4.11
shows the four-step sequence.

Fig 4.11 Four step sequence to drive a stepper motor

Use an Outputs command in PIC-Logicator software for each step. Set each command to switch on or
off the appropriate outputs from the PIC microcontroller. The time between each Outputs command
will determine the speed at which the motor turns. Use a short Wait time between each Output
command to dictate the speed of the motor. By using Wait [A] and setting variable A to values, you
can actively control the speed of the motor.

Fig 4.12 A ULN2003A Darlington Driver can be used to drive the stepper motor.

5V

 57

C3. Servo Motors

A Servo is a small device that has an output shaft. This shaft can be
positioned to specific angular positions by sending the servo a coded
signal. As long as the coded signal exists on the input line, the servo
will maintain the angular position of the shaft. As the coded signal
changes, the angular position of the shaft changes. In practice, servos
are used in radio controlled airplanes to position control surfaces like
the elevators and rudders. They are also used in radio controlled cars,
puppets, and robots.

The servo motor has some control circuits and a potentiometer that is
connected to the output shaft. This pot allows the control circuitry to
monitor the current angle of the servo motor. If the shaft is at the correct angle, then the motor shuts
off. If the circuit finds that the angle is not correct, it will turn the motor the correct direction until the
angle is correct. The output shaft of the servo is capable of travelling somewhere around 180 degrees.
Usually, its somewhere in the 210 degree range, but it varies by manufacturer. A normal servo is used
to control an angular motion of between 0 and 180 degrees. A normal servo is mechanically not
capable of turning any farther due to a mechanical stop built on to the main output gear.

The amount of power applied to the motor is proportional to the distance it needs to travel. So, if the
shaft needs to turn a large distance, the motor will run at full speed. If it needs to turn only a small
amount, the motor will run at a slower speed. This is called proportional control.

Servo motors can create a high level of electrical noise which can disrupt the PIC microcontroller’s
processing. It is important to use a separate power supply for the servo motor, to that supplying the
PIC, but ensure that the 0v lines of both power supplies are connected together.

Servos normally have three wire connection. The red and black should be connected to the power
supply (red +6v) and the white connected to the PIC output as in the following diagram.

330R

+6v

PIC Out

0v

 58

Connecting Input Devices

Note that diagrams shown in this section show how to connect the input device only. For simplicity, the
PIC microcontroller is simply shown as a block. In each case, the PIC microcontroller must be
connected to power as shown in “3. Basic Connections” (page 48). The position of the input pins on
the block diagram does not necessarily indicate the position of an input pin on a PIC microcontroller
chip. Consult the pin-out diagrams in “2. PIC Microcontroller Pin-out Diagrams” (page 45) to identify
the correct pin to use.

A. Digital Sensors
The most-commonly used digital sensor is a switch, such as a microswitch, push switch or reed
(magnetic) switch. All of these devices have two contacts which are either open (0) or closed (1). Fig
5.1 shows how to connect a digital sensor such as a switch to a PIC microcontroller

Fig 5.1 Connection of a switch

B. Analogue Sensors

B1. Potentiometer
Connect the wiper directly to an analogue input pin on the PIC microcontroller as shown in fig. 5.2.

Fig 5.2 Connection of a potentiometer.

5V

5V

 59

B2. Light sensor
Fig 5.3 shows how a light sensor can be made by connecting a light dependent resistor (LDR) and a
fixed resistor to a PIC microcontroller. For this circuit, ambient light (inside) will be around the 80 level
on the scale, with dark being 0 and bright sunlight taking the reading up to 255.

Fig 5.3 Connection of a light sensor

B3. Temperature sensor
A temperature sensor is made by connecting a thermistor and fixed resistor to a PIC microcontroller as
shown in fig 5.4. In this circuit, a temperature of about 20°C will give a reading of about 30 on the PIC-
Logicator scale and will drop to nearly zero at 0°C.

Fig 5.4 Connection of a temperature sensor

To avoid possible interference from sensors to other analogue inputs, it is a good idea, when designing
your circuit, to connect any unused analogue inputs to 0 volts (ground).

In this type of simple circuit, the sensors do not respond linearly. Some experimentation is required for
your own application to ensure that your PIC microcontroller is responding at the correct levels. To be
sure of the actual level that the PIC microcontroller is reading from the input, use the PIC-Logicator
Analogue Calibration Board (see page 26) which is a valuable development tool because it displays
the actual reading that is being obtained from the sensor.

5V

5V

