3°- sujet brevet septembre 2004

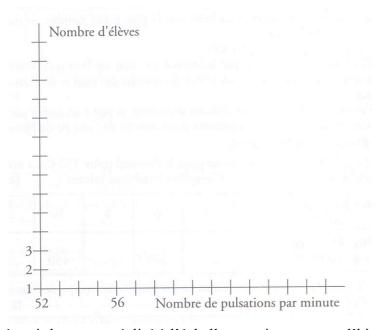
PROBLEME (12 points)

Partie A

Un professeur d'éducation physique et sportive fait courir ses élèves autour d'un stade rectangulaire mesurant 90m de long et 60m de large.

- 1. Calculer, en mètres, la longueur d'un tour de stade.
- 2. Pour effectuer 15 tours en 24 minutes à la vitesse constante, combien de temps un élève doit-il mettre pour faire un tour ? On donnera la réponse en minutes et secondes.
- 3. Un élève parcourt 6 tours en 9 minutes. Calculer sa vitesse en m/min puis en km/h.

Partie B


On a relevé le nombre de pulsations par minute de 32 élèves avant qu'ils n'effectuent leurs tours de stade. Les résultats obtenus sont les suivants :

57 61 55 67 59 52 59 63 62 65 59 54 59 57 62 54	
61 65 63 61 63 55 66 63 61 59 62 63 58 61 59 63	

- 1. Montrer que le nombre moyen de pulsations par minute est égal à 60,25.
- 2. Recopier et compléter le tableau suivant :

Nombre n de pulsations par minute	52≤n<56	56≤n<60	60≤n<64	64≤n<68
Efectif	5			

- 3. En vous aidant du repérage ci dessous, faire l'(histogramme représentant le tableau ci dessus. Les unités choisies sont :
 - sur l'axe des abscisses, 1 cm pour représenter 1 pulsation par minute ;
 - sur l'axe des ordonnées, 1 cm pour représenter 1 élève.
- 4. Combien d'élèves ont au moins 60 pulsations par minute ?
- 5. Quel est le pourcentage d'élèves ayant un nombre de pulsations par minute inférieur à 60 ?

Le renère ci-dessus est réalisé à l'échelle mais on tracera l'histogramme à l'échelle 1

3°- sujet brevet septembre 2004

SACHAUFGABE (12 Punkte)

Teil A.

Schüler rennen um ein rechteckiges Stadion, deren Länge 90 m und Breite 60 m sind herum.

- 1. Berechne in Metern den Umfang des Stadions.
- 2. Wie lang braucht ein Schüler, um 15 Runden in 24 Minuten zurückzulegen? Die Antwort wird in Minuten, Sekunden angegeben.
- 3. Ein Schüler legt 6 Runden in 9 Minuten zurück. Berechne die Geschwindigkeit in m/min und km/h.

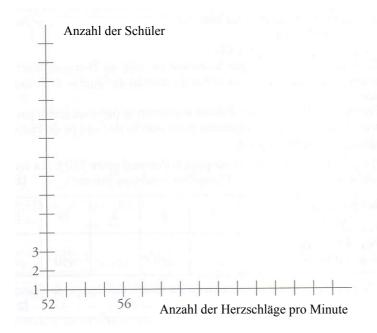
Teil B.

Man gibt die Anzahlen der Herzschläge pro Minute von 32 Schülern vor dem Start.

5	7 61	55	67	59	52	59	63	62	65	59	54	59	57	62 5	54
6	1 65	63	61	63	55	66	63	61	59	62	63	58	61	59 (53

- 1. Prüfe, dass der Mittelwert der Herzschläge pro Minute 60,25 ist.
- 2. Schreibe ab und ergänze folgende Tabelle:

3.


Anzahl der Herzschläge / min	52≤n<56	56≤n<60	60≤n<64	64≤n<68
Absolute Häufigkeit	5			

4. Erstelle das entsprechende Stufendiagramm.

Auf der x-Achse: 1 cm entspricht 1 Herzschlag/min

Aud der y-Achse: 1 cm entspricht 1 Schüler.

- 5. Wieviele Schüler haben mindestens 60 Herzschläge pro Minute?
- 6. Wie gross ist der Prozentsatz der Schüler mit höchstens 60 Herzschlägen pro Minute?

Das Koordinatensystem ist im $Ma\beta$ stab _ dargestellt ; jedoch wird das Stufendiagramm im $Ma\beta$ stab 1 gezeichnet.